Robust Correlation in R
Arndt Regorz, Dipl. Kfm. & M.Sc. Psychology, 03/22/2022
(Note: When you click on this video you are using a service offered by YouTube.)
Here is the R code for the Youtube tutorial about robust correlation methods in R.
You will need the following R package, which must be installed once before use, e.g. install.packages("WRS2"):
- WRS2
R code
# Scatterplot
attach(data_correlation)
plot(X, Y)
detach(data_correlation)
# Pearson correlation
# Pearson correlation raw data
attach(data_correlation)
cor.test(X,Y)
detach(data_correlation)
# Pearson correlation manually excluding outliers
data_correlation_cleaned <- subset(data_correlation, Y < 10)
attach(data_correlation_cleaned)
plot(X, Y)
cor.test(X,Y)
detach(data_correlation_cleaned)
# Classical robust correlations
# Spearman correlation
attach(data_correlation)
cor.test(X,Y, method="spearman")
detach(data_correlation)
# Kendall's tau
attach(data_correlation)
cor.test(X,Y, method="kendall")
detach(data_correlation)
# Modern robust correlations
library(WRS2)
# Percentage bend correlation
attach(data_correlation)
pbcor(X,Y)
detach(data_correlation)
# Winsorized correlation
attach(data_correlation)
wincor(X,Y)
detach(data_correlation)
# Robust methods without outliers
attach(data_correlation_cleaned)
cor.test(X,Y)
cor.test(X,Y, method="spearman")
cor.test(X,Y, method="kendall")
pbcor(X,Y)
wincor(X,Y)
detach(data_correlation_cleaned)